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ABSTRACT:

Due to increased availability and affordable cost of TM7 data, one envisages its widespread use for land cover mapping in many
developing countries. There is need to establish not only the potential but also the limitations of TM data for land cover mapping in
some natural ecosystems of the tropics. Uganda is a tropical country with well-distributed rainfall and its landscapes are characterised
by luxuriant vegetation, remaining healthy throughout the year. Wet savanna ecosystems, common in Uganda, are characterised by
wood-grass mixtures of variable wood density. Mixed pixels characteristic of TM data are believed to effect land cover mapping in
wet savanna ecosystems. Given the high expenses required to generate land cover maps from airborne data, TM and SPOT data are
preferred for land cover mapping in the country, irrespective of the nature of the landscapes. For example, a number of vegetation
mapping exercises have been completed for two savanna national parks using TM and SPOT data. What is not yet understood, by the
wider conservation community in Uganda, is whether TM or SPOT data is suitable for land cover mapping of wet savanna
ecosystems, despite its availability and affordability. In this study, high-resolution digital airborne data was used as a validation tool
to investigate the effect of mixed pixel spectra on land cover mapping in a wet savanna ecosystem. Results indicate that mixed pixels
adversely affect land cover mapping in savanna compared to homogeneous landscapes.

                                                          
* Corresponding author.

1. INTRODUCTION

1.1 Overview

Digital spectral analysis of multispectral imagery data for land
cover mapping has fundamental limitations due to spectral
overlap. According to Price (1994), spectral overlap is a
fundamental problem of healthy leaves of different vegetation
categories. Yet, identification of different vegetation categories
depends, mostly, on the mass of leaves exposed to incoming
solar radiation for an optical imaging sensor like Landsat TM.
In Uganda, unlike in temperate areas, wood vegetation
categories remain green throughout the year and hence their
identification from images based on seasonal leaf shading is
limited. Mapping of grassland communities is not straight
forward either. This is because mature grass left undisturbed is
characterised by dry or near to dry leaves.

Secondly, big patches of grass are seasonally burnt in both
protected and non-protected areas. Fire is a common
management tool used by both managers of protected areas and
pastoralists. Burning results in different stages of grass growth.
The net effect is varied spectral responses for a given grassland
community for an image snapshot. Identification of grassland
communities in a wet savanna ecosystem is, therefore, an
additional challenge to spectral image analysis.

The third challenge of spectral analysis for land cover mapping
in a wet savanna ecosystem is spectra of mixed pixels. Do

spectral values of mixtures of wood and grass represent the
actual variation found on the ground?

1.2 Aims

The overall aim is to find out whether spectra derived from
pixels representing wood-grass vegetation mixtures represent
identifiable land cover classes or not.

This paper is organised as follows: A review of related work is
presented in the next subsection. This is followed by a
discussion of the methods and materials used (Section 2). In
Section 3, results are presented and then discussed in Section 4.
Finally, conclusions and recommendations are presented in
Section 5.

1.3 Literature Review

The development of high-resolution air- and space-borne
imaging sensors might be regarded as a response to provide
digital multispectral data for precision mapping of both natural
and man-made surface features. While high-resolution (4m)
IKONOS multi-spectral data is now available even for areas
such as East African, Landsat ETM+ data are widely used in the
region because of its availability and affordability. For example,
according to USGS and Clean Lakes (2000), IKONOS data cost
$29 per km2 of terrain. This is in contrast to only $0.02 per km2
as the cost of Landsat ETM+ data. The big price differentials
between high- and medium-resolution imagery data means that
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pragmatic decisions taken in commissioning vegetation
mapping in most countries are most likely to be based on
economic considerations, especially if small-scale mapping is
envisaged.

In this regard, development of hybrid image classification
algorithms, referred to as soft classifiers, may be regarded as a
positive effort to overcome the limitations imposed by mixed
pixels and hence allowing cost-effective technique for land
cover mapping in heterogeneous ecosystems. Soft image
classification algorithms, widely encountered in remote sensing
literature, include various types of sub-pixel mixture modelling
and fuzzy classification techniques. However, as pointed out by
Foschi and Smith (1997), sub-pixel mixture modelling appears
suitable for identifying few land cover components (such as soil
from vegetation) from an image scene. Indeed, a number of
authors such as Huguenin et al. (1997), Sohn and McCoy
(1997) and Warner and Shank (1997) have used soft classifiers
to identify and map few land cover components (called end
members) from low/coarse resolution data.

In this paper, it is argued that presence of TM mixed pixels
hampers land cover identification and mapping in wet savanna
ecosystems beyond the remedy of soft classification techniques.
This proposition is based on the observation that inconsistent
classification errors are obtained for different land cover classes
identified from TM data during mapping exercises in different
ecosystems of Uganda. For example, using TM data, Fuller et
al. (1998) successfully produced a land cover map (overall
classification accuracy of 86%) using a Maximum Likelihood
Classification technique for Sango Bay area in Uganda. In
contrast, using TM data and similar classification techniques, an
overall classification accuracy of less than 30% of a land cover
map was generated for Murchison falls National Park (Uganda
Wildlife Authority-GTZ, 1997). The major difference between
Sango Bay and Murchison Falls National Park is that the former
is characterised by homogeneous land cover types (rain forests,
shrubs, papyrus, tall wetland grass, short grass) while the latter
is characterised by wood-grass mixtures of different wood
densities.

The phenomenon of mixed pixels is not new and has been
studied by many scientists, especially in relation to the
development of soft classification algorithms (see for example,
Zhang and Kirby (1997) and Warner and Shank (1997)).
According to Warner and Shank (1997), mixed pixels are
formed when instantaneous field-of-view (IFOV) of an imaging
sensor falls on an area that is characterized by more than one
spectra. It is often stated that spectra of mixed pixels are formed
by ’automatic aggregation’ of sub-pixel sized terrain features by
an imaging sensor. Warner and Shank (1997) further observed
that mixed pixels formed from forest-urban interface had similar
spectra as short grassland. While misclassifications between
vegetation and urban surfaces might be remedied by the use of
soft classifiers, retrieving Termilia sp. from Albizia from wood-
grass mixture of different wood densities is deemed unpractical,
if one assumes that Price’s (1994) observations are true. Yet,
more than 50% of total landscape in a wet savanna ecosystem
may be covered by wood-grass mixtures of different densities
that need identification and mapping from satellite imagery data
at scales of 1:50,000 - 1:150,000.

Figure 1 depicts part of a terrain of Murchison Falls national
Park (MFNP) that is typical of a wet savanna ecosystem. River
Nile is shown in the middle of the photograph. Figure 2 is an
illustration of how TM mixed pixels may be formed in a wet
savanna ecosystem: the data on the left is a high-resolution

(0.5m) airborne image resampled to a spatial resolution of 2.0m.
On the right, is the same portion of the terrain as scanned by
TM sensor and co-registered to the same map projection as for
the airborne image.
Two shrub patches of different sizes are clearly discernable on
the digital airborne data. The boundaries of the two shrub
patches were delineated to yield a vector file (broken lines)
before being overlaid on TM data. The larger shrub patch is
somehow visible on TM data, but the smaller shrub patch is not.
When TM data is used for land cover mapping, we have to
assume that sub-pixel objects (such as trees/shrubs) are
’automatically aggregated’ in the surrounding background land
cover pixels. Is this assumption true in landscapes (such as wet
savanna ecosystem) with small tree/shrub patches but of a
significant density as shown in Figure 3? It is in light of this that
the following hypothesis was formulated for this study:

Spectra of mixed pixels do not represent wood-grass mixtures of
variable wood densities in a wet savanna ecosystem.

2. METHODS

2.1 Selection of Study Sites

Several sites were selected to test the above hypothesis. The test
sites were selected from both heterogeneous (representing wet
savanna ecosystems) and homogeneous landscapes. Test sites
selected from the latter were regarded as controls. A number of
analyses were carried out to generate information needed to test
the hypothesis:

1) Visual delineation of land cover patches from airborne
data. This was carried out for one test site selected in
MFNP (wet savanna ecosystem);

2)  Spectral segmentation of TM data for the same test site in
step (1) above;

3) Determination of wood densities of results derived in steps
(1) and (2) above;

4) Determination of relationship between TM-derived land
cover categories and wood density; and

5) Estimation of spectral brightness values of both mixed and
’none’ mixed pixels.

2.2 Data Used

TM data used for this study was acquired in 1995 i.e. two years
before the commencement of this research. High-resolution data
(used to validate the outcomes from analysis of TM data) was
acquired by a Kodak Aerial Digital Photographic System
(model DCS560) in 1998-1999. The data used were acquired in
three channels i.e. near infrared (700-900), red (680-700) and
green (500-680). For further details regarding the operational
principles and data characteristics acquired by Kodak DCS560,
the reader is referred Koh et al. (1996).

Digital airborne data (DABD) were used to generate spatial
information, which was in turn was used for validation of TM
data segmentation results. Researchers such as Klöditz et al.
(1998) have use of high-resolution data as a practical tool to
validate results obtained from coarse resolution data.
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Figure 1. Typical appearance of a wet savanna landscape: [A]
in MFNP; [B] shows individual trees on DABD
(MFNP)

Figure 2. Spectral appearance (colour) of two different shrub
sizes growing in grassland

2.3 Image Classification

2.3.1 Delineation of land cover from airborne data: Using
standard visual classification techniques, five major land cover
categories were delineated from DABD for a test site selected
from a wet savanna ecosystem. The five land cover categories
were defined in the field prior to DABD interpretation and
boundary delineation. A wood density classification system

employed during vegetation mapping of MFNP (Uganda
Wildlife Authority-GTZ, 1997) was used in the estimation of
field wood density. Table 1 shows a description of the five land
cover categories delineated from DABD.

2.3.2 TM data Classification: A Maximum Likelihood
Classifier was used to segment TM data into similar land cover
categories generated from DABD as explained in (a) above. To
take care of different spectra of the same land cover category, it
was necessary to define sub spectral classes for each land cover
category. Spectral classes belonging to the same land cover
were merged together after image classification. The
expectations of this investigation were that land cover classes
101, 203 and would be identified and mapped in the usual way,
with misclassifications explained in terms of normal spectral
overlap. However, for the hypothesis to be declared true, land
cover categories 201 and 202 (characterised by significant
mixed pixels) would have to be identified and mapped from
both digital airborne and TM data.

Major land cover Wood density
(%)
[Based on
subjective
estimation]

Spec
tral
code

Spectral
subdivisio
ns

1. Very dense
woodland

> 65 101 101- to
101-2

2. Tall grass with
some wood cover

5 – 35 201 201-1 to
201-6

3. Tall grass with
significant wood
cover

35 - 65 202 202-1 to
202-6

4. Tall grass with
insignificant wood
cover

< 5 203 203-1 to
203-7

5. Short grass with
insignificant wood
cover

< 5 301 301 &
301-2

Table 1. Major land cover categories and their spectral
subdivisions

2.3.3 Determination of Wood Density: Individual trees/shrubs
or small clumps of the two are not discernable on TM data due
to the limited spatial resolution. In order to investigate whether
spectra of mixed pixels are of any value or not, for land cover
mapping, actual wood density information was needed. Wood
density was quantitatively determined from wood cover
information derived from DABD. This was achieved as follows:
in ArcView, polygons were created for each patch of woody
vegetation, and stored as a shape file. Subsequently, a 1 ha grid
was created and overlaid on the woody vegetation shape file,
giving information on percentage of woody and grass patches in
each grid. Lastly, more than 150 of 1 ha (i.e. grid cells) were
selected using a stratified random sampling technique. That is, 1
ha sample plots were selected for each of the land cover classes
identified in Table 1.

A one-hectare sample plot was used for two reasons: first, it is
widely used for vegetation mapping in savanna ecosystems of
East Africa (Pratt and Gwynne, 1977). Secondly, a one-hectare
sample plot allows most small patches of vegetation patches to
be identified from TM data. Wood density, Wd, of each sample
plot (grid cell) was calculated as follows:

Wd (%) = area of wood cover (m)/10,000 x 100        (1)

[A]

Wood-Grass mixtures (wet
savanna ecosystem)

[B]

Shrub (0.3ha)

Shrub
(0.1)

Grass

TM data (30m)

DABD  (2.0m)

Shrub (0.3ha)

Shrub
(0.1)



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, Part 6/W6

165

The resultant wood-density-map was classified into 20 equal
(5% each) interval classes. A classification system with a
narrow and equal interval was considered more appropriate for
generating wood density information needed for further
analysis.

Secondly, wood density information was generated for each
land cover class obtained from DABD. The same procedure as
described above was used. The only difference was that the
basis of calculating wood was based on all polygons belonging
to the same land cover category.

2.4 Data Analysis

In order to establish whether there is any significant correlation
between wood density and two wood-grass mixtures (201 and
202) derived from TM data, it was necessary to carry out a
spatial cross-tabulation. Spatial cross-tabulation was carried out
in ArcView GIS and outputs were further analysed in Microsoft
Excel.

Secondly, two land cover indices were determined for spatial
information derived from both TM and airborne data. The
indices were required to spatially validate whether land cover
classes 201 and 202 are mapped as unique classes, or as
homogeneous classes belonging either wood or grass. To allow
spatial comparison of indices derived from TM and DABD, two
minimum mapping units (MMU) i.e. 900m2 and 3600m2 were
used as a basis of calculating the indices. The indices were
determined using a technique developed by the authors to
determine the spatial resolution at which geometric properties of
vegetation patches obtained from sub-metre resolution data
significantly deviate from actual patches with decreasing image
resolution (Mugisha and Huising, 2002). Two land cover
indices, Spatial Land Cover Index and Land Cover Patchiness
Index, were determined as follows:

2.4.1 Spatial Land Cover Index: Spatial Land Cover Index
(SLCI) was determined as a measure of how accurate it is to
identify and map wood-grass mixtures (represented by classes
201 & 202) in a wet savanna ecosystem. SLCI was measured as
a ratio of two different areas (CA:RA) derived from airborne
and TM data. CA refers to ’corresponding area’ obtained by
overlaying TM and DABD derived wood/grass patches, while
RA refers to ’reference area’ obtained for wood/grass derived
from DABD at a spatial resolution of 2.0m. Area of only two
land cover classes (wood and grass) was used in order to avoid
spectral overlap associated with wood-wood and grass-grass.

To obtain an accurate and reliable SLCI, both TM and airborne
data were carefully registered to a common map projection
(UTM). Piecewise Affine Model recommended by Ji and Jensen
(2000) for rectification of digital airborne data was used. It was
assumed that any errors associated with the image rectification
process were the same for all the test sites and hence affected
the results in a similar manner. Based on other studies (Mason
et al., 1997), it has been possible to attain a high level of
planimetric accuracies after rectification of digital airborne data.
Calculation of SLCI was achieved using the following equation:

SLCI(%)  = CA /RA  x 100                                             (2)

The calculated SLCI may be equated to conventional overall
classification accuracies of both wood and grass patches.
However, the three geometric properties (attributes, size and
shape) of land cover patches were taken into consideration
during the calculation of SLCI. As pointed out by Zhu (1997),

this is a better technique for establishing overall classification
accuracies than conventional methods, which concentrate on
sample reference thematic data only.

In addition to SLCI calculated as discussed above, Aspatial
Land Cover Indices (ALCI) were calculated. However, instead
of using ‘corresponding area’ (see equation 2), TM-A and
DABD-A were used. TM-A and DABD-A refers to area of wood
or grass derived from TM and DABD information respectively.
The following equations were used for the calculation of ALCI:

ALCI(%)   = TM-A/RA  x 100                                           (3)

ALCI(%)  =  DABD-A/RA  x 100                                       (4)

2.4.2 Land Cover Patchiness Index: Land Cover Patchiness
Index, LCPI, in this paper refers to the ratio of the sum of
wood/grass patches to the sum of reference patches. LCPI were
determined using the following equations:

LCPI(%)  = TM-P/RP   x 100                                           (5)

LCPI(%)  = DABD-P/RP   x 100                                     (6)

Where:
TM-P denotes the sum of wood or grass patches (polygons)
derived from TM data;
DABD-P denotes the sum of wood or grass patches (polygons)
derived from DABD; and
RP denotes the sum of wood or grass patches (polygons)
derived from reference data.

2.5 Determination of Spectral Characteristics of Mixed and
Unmixed Pixels

Lastly, mean spectral brightness values of sample mixed pixels
and pixels representing homogeneous land cover categories
were determined for a TM image of Nabugabo Ramsar site.
Spectra of mixed pixels determined would have been formed
from shrubs of different sizes growing in grassland. This was
achieved as follows: A "seed" mixed pixel was selected using
the 'Feature Mapping Operations' of MicroImages TNTmips.
The selected 'seed' mixed pixel was used in an 'exact decision'
rule to as a statistical basis of identifying other mixed pixels of
the same brightness value.

Raster masks were created from the selected mixed pixels
belonging to one group. Each mask was used to extract pixels
from the first image component generated from TM data (bands
1,2,3,4,5 & 7) using Principal Component Analysis. A mean
spectral brightness value was determined from mixed pixels of
the same category. This procedure was repeated for pixels
representing homogenous land cover classes.

3. RESULTS

Figure 4 depicts the distribution of wood density classes for
each of the land cover classes. The graph is characterised by
three peaks centred at wood density classes 5-10, 20-25 and 45-
50%. A second feature of the graph is that the five land cover
categories are associated with a wide wood density range. For
short grass, the wood density range does not go beyond 25%.
Tall grass is associated with wood density ranging from 0 -
60%, while dense/very dense wood occurs over the entire range
of wood density, 0 - 100%. From the results presented in Figure
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4, there is no evidence to suggest that wood density is a useful
criterion for spectral image segmentation.

Table 2 shows summary statistics of the five land cover
categories derived from airborne and TM data. The results in
Table 2 wood densities determined using three techniques: a)
field estimates, b) visual interpretation of DABD, and c) 1 ha
samples. The results shows that about 44% of the total cover
patches (in the test site) are wood-grass mixtures represented by
classes 201 and 202. The rest of the land cover categories (101,
203 and 301) can be described as homogeneous. Secondly, the
average wood densities (determined from DABD) have some
similarities with wood density classes associated with the three
peaks shown in Figure 4. There is a good match between peak
wood densities at 7.5% and 47.5%. This is not surprising given
the fact that the three peaks represent wood density classes at
which homogeneous land cover classes (101, 203 & 301) are
identified and mapped. In addition, the wood density depicted
by the shorter peak (20-25%) seems to combine wood density
classes of land cover categories represented by 201 and 202.

In summary, the results presented show that there is a tendency
for all the five land cover classes to be identified under three
broad spectral groups represented by a) ’stressed’, b) grass, and
c) dense wood vegetation categories. However, this explanation
does not account for wood-grass mixtures associated with 201
and 202 land cover classes. To which land cover category were
the mixed pixels land cover class 201 and 202 allocated? There
are two possible scenarios: First, 201 could have been
’automatically aggregated’ with tall grassland (203) and likewise
202 could have been aggregated with very dense woodland
(101). Secondly, depending on the spectra of other land cover

categories (such as papyrus, Vossia sp. and to some extent some
acacia woodlands), there is a possibility that spectra of 201 and
202 can be classified as any of the listed land cover classes.
This would result in ’geometric absence’ of 201 and 202 as
actual land cover classes.

If ’geometric absence’ is defined in terms of attributes and
boundaries of land cover patches, then the next set of results
provides some evidence to explain the fate of mixed pixels after
a statistical image classification. Tables 4 and 5 show Spatial
Land Cover Indices (SLCI) and Aspatial Land Cover Indices
(ALCI) calculated for grass and wood for control and test sites.
While overall SLCI of mapped wood and grass is over 70% in
control sites, the value is only 47.7% for test sites. In addition,
ALCI are more predictable in control rather than in test sites.

Land Cover Patchiness Indices (LCPI) shown in Tables 6 and 7
are an indication that a high ALCI may be associated with
‘geometrically absent’ land cover patches. Why should LCPI
derived from TM be higher than those derived from DABD? If
we assume that wood/grass patches derived from TM and
airborne data occupy the similar terrain positions as depicted in
Figure 5, an explanation of ‘geometric absence’ of wood and
grass patches from TM data is possible. Figure 6 illustrates that
wood-grass mixtures formed from shrubs and short grass are
misclassified as tall wetland grass. Also, note that spectra of
mixed pixels (insignificant in number though) formed on both
high-resolution airborne and TM data are misclassified as tall
wetland grass.

Figure 4. Distribution of wood density for the five land cover classes

Results in Figure 6 show that very small wood patches in a
background of short grassland result in spectra of mixed pixels
showing a small deviation from spectral characteristics of short
grassland. However, as the size of wood patches increases, the
spectra of mixed pixels start resembling spectral characteristics
of other homogeneous land cover categories as depicted in
Figure 6. This observation explains the 'geometric absence' of
both wood and short grass patches at particular locations for

SLCI calculated from TM data. In a homogeneous landscape,
such misclassifications would be limited to boundaries between
grass and wood covers and hence do not adversely affect SPLI
as is the case for control sites. However, in heterogeneous
landscapes (such as wet savanna ecosystems), the effect of
mixed pixels on overall accuracy of TM-derived spatial
information cannot be underestimated.
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Average wood density (%)Vegetation type

Field estimates DABD visually
produced map

TM (Peak s)

% Cover

Very dense woodland >65 47.9 47.5 6.7
Dense woodland 35 - 65 24.9 22.5 18.9
Wooded grassland 5 - 35 19.5 - 25.4
Tall grass (insignificant trees/shrubs) < 5 7.4 7.5 28.4
Short grass (insignificant trees/shrubs) < 5 7.4 7.5 20.6

Table 2. Comparison of wood density determined using three different techniques

Table 3. Calculated SLCI and ALCI for control sites

Land cover Reference Data DABD-ALCI (%) TM-ALCI (%) SLCI (%)

4m2 900m2 3600m2 900m2 3600m2

Herbaceous (mainly grass) 100 94.9 87.2 116.2 96.1 55.5

Wood 100 92.2 85.6 63.9 41.5 29.1

Total area 100 94.1 86.7 100.7 79.9 47.7

Table 4. Calculated SLCI and ALCI of test sites

Table 5. LCPI calculated for control sites

Table 6. LCPI calculated for test sites

4. DISCUSSION

Conventionally, vegetation mapping involves identification of
homogeneous units based on three major criteria: plant life
forms, cover and taxonomical class (Di Gregorio and Jansen,
2000). However, spectral overlap makes it difficult to identify
and map all plant communities in many healthy ecosystems.
This study has shown that presence of substantial mixed pixels
is an additional limitation of using TM data for land cover
mapping in wet savanna ecosystems.

Secondly, absence of large-scale vegetation maps coupled with
little differentiation in different landform types of most wet
savanna ecosystems means that contextual correction techniques
described by Groom et al. (1996) might not be a useful
technique to improve accuracies of spatial information derived
from TM data for a wet savanna ecosystem.

Land cover Reference Data DABD-ALCI (%) TM-ALCI (%) SLCI (%)

4m2 900m2 3600m2 900m2 3600m2

Herbaceous (mainly grass) 100 98.9 98.1 98.3 92.4 71.7

Wood 100 94.7 90.5 108.2 94.4 76.8

Total area 100 98.1 96.5 100.3 92.8 72.8

Land cover Reference Data DABD-LCPI (%) TM-LCPI (%)

4m2 900m2 3600m2 900m2 3600m2

Herbaceous (mainly grass) 100 15.8 4.9 63.4 13.1

Wood 100 12.3 4.0 53.4 7.0

Total patchiness 100 14.7 4.6 60.2 11.1

Land cover Reference Data DABD-LCPI (%) TM-LCPI (%)

4m2 900m2 3600m2 900m2 3600m2

Herbaceous (mainly grass) 100 9.8 5.6 31.5 15.7

Wood 100 9.6 3.6 33.5 10.4

Total patchiness 100 9.7 4.6 32.5 13.1
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Figure 5. Image rectification was considered accurate enough to
allow overlay of spatial information derived from both
airborne and TM data in the determination of
‘corresponding area’

Figure 6. Illustration of ‘geometric absence’ of wood-grass
mixtures and homogeneous wood or grass at locations
occupied by mixed pixels

Table 7(a). Mean of brightness values of mixed pixels
determined for different sizes of shrubs growing
in two types of grasslands (Nabugabo Ramsar
site)

Table 7(b). Brightness mean values of pixels of various
homogenous cover types (Nabugabo Ramsar site).

Other remote-sensing scientists are increasingly raising the
concern that mixed pixels hamper land cover mapping for
heterogeneous surfaces. For example, Paul Houser in 2001
writing in a News Letter (Biospheric Aspects of the
Hydrological Cycle-Global Energy and Water cycle
Experiment), asks a similar question: "Is a land surface scheme
which includes sub-grid surface heterogeneity really
representing the same kind of varied surface that is viewed by
the satellite?" While the concerns of Houser were raised in the
context of coarse resolution satellite data used for global
monitoring of land surface variables (vegetation indices, soil
moisture and temperature), this study has shown that mixed
pixels associated with TM data impose severe limitations for
land cover mapping in a wet savanna ecosystem.

5. CONCLUSIONS

Based on the findings of this study, it is concluded that wood-
grass mixtures are not represented by spectra of mixed pixels as
unique land cover classes. The hypothesis is thus accepted.
Secondly, neither do the spectra of mixed pixels formed from
wood-grass mixtures represent homogeneous wood or grass
patches from which they were derived. Therefore, in wet
savanna ecosystem where patches of wood-grass mixtures are of
significant density, mixed pixels hamper land cover mapping.

The limitations imposed by mixed pixels cannot be overcome
by selecting a suitable mapping scale as recommended in
standard mapping manuals and other reference literature. For
example, NPA Group (2002) recommends a mapping scale of
1:100,000 and 1;250,000 when using TM and MSS data
respectively. A past vegetation-mapping project in MFNP
(Uganda Wildlife Authority-GTZ, 1997) using TM data and
pre-determined mapping scale of 1:125,000, as mentioned
earlier, yielded low overall classification accuracies. It appears
that the recommended mapping scales are suitable for
identification and mapping of land cover categories in
homogeneous rather than heterogeneous ecosystems when using
TM data. This study, therefore, recommends use of image data
of suitable resolution for land cover mapping in wet savanna
ecosystems.
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Land cover

Shrub
size

(<450m2)

Shrub size
(450m2 -
900m2)

Shrub size
(900m2 -
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